Stability Region based Methods for
Learning and Discovery

Chandan K. Reddy and Hsiao-Dong Chiang

Department of Electrical and Computer Engineering
Cornell University, Ithaca, NY-1/853.

Abstract

Many problems that arise in machine learning and data mining domains deal with
nonlinearity and quite often demand users to obtain global optimal solutions rather
than local optimal ones. Several algorithms had been proposed in the optimiza-
tion literature and inherited by the machine learning community. Popularly known
as the initialization problem, the ideal set of parameters required will significantly
depend on the initial values given by the user. In this paper, we propose stability
region based methods for systematically exploring the subspace of the parameters to
obtain the neighborhood local optimal solutions. The proposed algorithm takes ad-
vantage of TRUST-TECH (TRansformation Under STability-reTaining Equilibria
CHaracterization) to compute neighborhood local optimal solutions on the nonlin-
ear surface in a systematic manner using stability regions. Our method explores
the dynamic and geometric characteristics of stability boundaries of a nonlinear
dynamical system corresponding to the nonlinear function of interest. Basically, our
method coalesces the advantages of the traditional local optimizers with that of the
dynamic and geometric characteristics of the stability regions of the corresponding
nonlinear dynamical system of the log-likelihood function. Two phases namely, the
local phase and the stability region phase, are repeated alternatively in the param-
eter space to achieve improvements in the quality of the solutions. The local phase
obtains the local maximum of the nonlinear function and the stability region phase
helps to escape out of the local maximum by moving towards the neighboring sta-
bility regions. The stability region based algorithms are applied to three important
machine learning problems in: (1) Unsupervised learning - model-based clustering,
(2) Pattern discovery - motif finding problem and (3) Supervised learning - train-
ing artificial neural networks. Our algorithms were tested on both synthetic and
real datasets and the advantages of using this stability region based framework are
clearly manifested. This framework not only reduces the sensitivity to initialization,
but also allows the flexibility for the practitioners to use various global and local
methods that work well for a particular problem of interest.
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discovery, dynamical systems, global optimization.
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1 Introduction

The problem of finding global optimal solutions arise in many disciplines rang-
ing from science to engineering. The task of finding such solutions is quite
complex and increases rapidly with the dimensionality of the problems. Iden-
tifying some promising regions in a solution space is relatively easier using
certain global methods available in the literature. However, the fine tuning
capability of these global methods is very poor and most of the times we end
up with a poor solution even though the surrounding region is promising.
Hence, there is an absolute necessity for exploring this surrounding to get bet-
ter solution. Due to the nature of the problem, it is very likely that the nearby
solutions surrounding the existing solution will be more promising.

Fig. 1 clearly shows the problems with nonlinear surfaces. Global methods
can be used to obtain promising subspaces in the parameter space. These are
indicated by drak shaded regions in (a). However, these promising regions are
not convex in nature. i.e. they will have multiple local optimal solutions. (b)
gives the top view of the nonlinear surface in the promising region. The dots
indicate the local optimal solutions. ’S” is the initial point obtained from the
global methods. Applying local method, it converges to "A’. There are other
stochastic methods that can search the neighborhood regions e.g. mutations in
genetic algorithms, low temperature annealing in simulated annealing method.

From the view of the parameter space, these methods randomly perturb the
given point without much knowledge of the topology of the nonlinear surface.
Using stability regions, we have a deterministic approach to obtain neighboring
local maxima as opposed to widely used stochastic methods. These stochastic
methods never guarantee the presence of a new stability region. Our approach
not only guarantees that a new local maximum obtained is different from the
original solution but also confirms that we will not miss a solution in any
particular direction. As shown in Fig. 1(b), the given local optimal solution
A’ is randomly perturbed to obtain new initial points (si, ss,s3). Applying
local method using these initial points again, one can obtain the local optimal
solutions A, a4 and ao3 respectively. It can be observed that the solutions
might appear again or might miss the neighborhood solutions.

In this work, we present a new stability region based method for finding such
neighborhood solutions in a systematic manner. This method is more reli-
able when compared to other stochastic approaches which merely use random
moves to find new solutions. Though some methods proposed in the literature
apply other additional mechanisms (like perturbations [1]) to escape out of
the local optimal solutions, systematic methods are yet to be developed for
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(a) Entire Parameter Space

(b) Promising Subspace

Fig. 1. Various stages of our algorithm in (a) Entire Parameter space - the dark
regions indicate the promising solution subspaces. (b) The dots indicate the lo-
cal optimal solutions and the regions surrounding are the stability regions of the
corresponding local optimal solutions.

searching the subspace. In this paper, the stability region based algorithms are
applied to three important machine learning problems namely: (1) Unsuper-
vised learning - model-based clustering, (2) Pattern discovery - motif finding
problem and (3) Supervised learning - training artificial neural networks.



2 Problem Formulation and Transformations

Now, we will introduce some of the terminology that is required to understand
the theoretical insights of our approach. Most importantly, this section deals
with the transformation of the nonlinear function into a dynamical system. It
also gives the correspondence between all the critical points of a n-dimensional
nonlinear surface and that of its corresponding dynamical system. Our method
is based on some of the fundamental results on stability regions of nonlinear
dynamical systems [2-4].

2.1 Mathematical Preliminaries

Before presenting the details of our method, we review some fundamental
concepts of nonlinear dynamical systems. Let us consider an unconstrained
search problem on an energy surface defined by the objective function

f(z) (1)
where f(x) is assumed to be in C?*(R", R).

Lemma 1 Z is said to be a critical point of (23) if it satisfies the following
condition

Vi(x)=0 (2)

Saddle Point

Local Minimum

Fig. 2. The surface and contour plots of a two-dimensional energy function.A saddle
point (z4) is located between two local minima (x! and 22). x} and 22, are two
local minima located in the orthogonal direction.



Now, we will define Saddle points which are the vital elements for understand-
ing our methodology. The saddle points are critical points whose gradient is
zero and Hessian of the nonlinear function has only one negative eigenvalue
[5]. Intuitively, this means that a saddle point is a maximum along one direc-
tion but a minimum along all other orthogonal directions [6]. Fig. 1 shows a
saddle point (x4) located between two local minima (x! and z2) and two local
maxima (z} and z2). As shown in the figure, the saddle point is a maximum
along the direction of the vector joining the two local minima and a minimum
along its orthogonal direction (or the direction of the vector joining the two
local maxima). The direction in which the saddle point is the maximum is
usually unknown in most of the practical problems and is the direction of
interest.

A critical point is said to be nondegenerate if at the critical point z € R”,
d'V2, f(z)d # 0 (Vd # 0). Now, we construct the following negative gradient
system in order to locate critical points of the objective function (23):

dx

= Vi) 3)

where the state vector x belongs to the Euclidean space ™, and the vector field
f:R" — R" satisfies the sufficient condition for the existence and uniqueness
of the solutions. The solution curve of Eq. (30) starting from x at time ¢ = 0
is called a trajectory and it is denoted by ®(z,-) : ® — R". A state vector x
is called an equilibrium point of Eq. (30) if f(z) =

Lemma 2 An equilibrium point is said to be hyperbolic if the Jacobian of f at
point x has no eigenvalues with zero real part. A hyperbolic equilibrium point is
called a (asymptotically) stable equilibrium point (SEP) if all the eigenvalues
of its corresponding Jacobian have negative real part. Conversely, it is an
unstable equilibrium point if some eigenvalues have a positive real part.

An equilibrium point is called a type-k equilibrium point if its corresponding
Jacobian has exact k eigenvalues with positive real part. When k£ = 0, the
equilibrium point is (asymptotically) stable and it is called a sink (or attrac-
tor). If k = n, then the equilibrium point is called a source (or repeller). A
dynamical system is completely stable if every trajectory of the system leads to
one of its stable equilibrium points. The stable (W*(Z)) and unstable (W*(Z))
manifolds of an equilibrium point, say Z, is defined as:
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The stable and unstable manifolds of an equilibrium point are said to satisfy
the transversality condition if either they do not intersect at all, or at every in-
tersection point xy between these two manifolds, the tangent spaces of W*(z)
and W*(xq) span R". This is shown in Eq. (6)

T(W?(x0)) & T(W*(20)) = R (6)

Lemma 3 The stability region (also called region of attraction) of a stable
equilibrium point x5 of a dynamical system (30) is denoted by A(Xs) and is

Alxs) ={z e R" : Jim O(x,t) = x5} (7)

The boundary of stability region is called the stability boundary of x, and will
be denoted by 0A(xs). It has been shown that the stability region is an open,
invariant and connected set [2]. From the topological viewpoint, the stabil-
ity boundary is a (n-1) dimensional closed and invariant set. A new concept
related to the stability regions namely the quasi-stability region (or practical
stability region), was developed in [3].

Lemma 4 The practical stability region of a stable equilibrium point x4 of a
nonlinear dynamical system (30), denoted by A,(xs) and is

A, (xs) =int A(zy) (8)
where A denotes the closure of A and int A denotes the interior of A. int A(x,)
1s an open set. The boundary of practical stability region is called the practical
stability boundary of xs and will be denoted by 0A,(xs).

It has been shown that the practical stability boundary 0A,(x,) is equal to
OA(x,). The practical stability boundary is a subset of its stability bound-
ary. It eliminates the complex portion of the stability boundary which has
no “contact” with the complement of the closure of the stability region. A
complete characterization of the practical stability boundary for a large class
of nonlinear dynamical systems can be found in [2].

Lemma 5 A type-1 equilibrium point x4 (k=1) on the practical stability bound-
ary of a stable equilibrium point x, is called a decomposition point.

The task of finding multiple local maxima on the log-likelihood surface is
transformed into the task of finding multiple stable equilibrium points on
its corresponding gradient system. The advantage of our approach is that



Fig. 3. Phase potrait of the gradient system corresponding to Fig. 2. The solid lines
represent the basin boundary which shows that 84, (z}) = J_, Ws(z4). The local
minima x! and 22 correspond to the stable equilibrium points of the gradient sys-
tem. The saddle point (xcll) corresponds to the decomposition point of the gradient
system.

this transformation into the corresponding dynamical system will yield more
knowledge about the various dynamic and geometric characteristics of the
original surface and leads to the development a powerful method for finding
improved solutions. In this paper, we are particularly interested in the proper-
ties of the local optimal solutions and their one-to-one correspondence to the
stable equilibrium points.

2.2 Theoretical Background

To comprehend the transformation, we need to define energy function. A
smooth function V() : " — R™ satisfying V(P(x,t)) < 0, V x ¢ {set
of equilibrium points (E)} and t € R is termed as energy function.

Theorem 6 [7/: f(x) is a lyapunov function for the negative quasi-gradient
system (30).

The stability region of a stable equilibrium point can be completely charac-
terized for a fairly large class of nonlinear systems.

Theorem 7 (Characterization of stability boundary): Consider a nonlinear
dynamical system described by (30) which satisfy assumptions (A1)-(A3). Let



oi, 1=1,2,... be the equilibrium points on the stability boundary 0A(xs) of a
stable equilibrium point, say xs. Then

0A@) = U W(0). (9)

o, €0A

Theorem 7 completely characterizes the stability boundary for nonlinear dy-
namical systems satisfying assumptions (A1)-(A3) by asserting that the sta-
bility boundary is the union of the stable manifolds of all critical elements
on the stability boundary. This theorem gives an explicit description of the
geometrical and dynamical structure of the stability boundary. This theorem
can be extended to the characterization of the practical stability boundary in
terms of the stable manifold of the decomposition point.

Theorem 8 (Characterization of practical stability boundary)[3]: Consider a
nonlinear dynamical system described by (30) which satisfy assumptions (A1)-
(A3). Let o; , i=1,2,... be the decomposition points on the practical stability
boundary 0A,(xs) of a stable equilibrium point, say xs. Then

DA, (1,) = .L;A W(o,). (10)

Theorem 8 asserts that the practical stability boundary is contained in the
union of the closure of the stable manifolds of all the decomposition points
on the practical stability boundary. Hence, if the decomposition points can be
identified, then an explicit characterization of the practical stability boundary
can be established using (10).

Theorem 9 (Unstable manifold of type-1 equilibrium point)[8]: Let x! be a
stable equilibrium point of the gradient system (30) and x4 be a type-1 equi-
librium point on the practical stability boundary 0A,(zs). Assume that there
exist € and 6 such that ||V f(z)|| > € unless x € Bs(2),z € {x : Vf(z) =0}. If
assumptions (A1)-(A3) are satisfied, then there exists another stable equilib-
rium point x? to which the one dimensional unstable manifold of x4 converges.
Conversely, if Ap(xl) N A, (x2) # 0, then there exists a decomposition point x4
on A, (x}).

Theorem 9 is imperative to understand some of the underlying concepts be-
hind the development of our method. It associates the notion of stable equilib-
rium points, practical stability regions (A,(x,)), practical stability boundaries
(0A,(xs)) and type-1 equilibrium points. As shown in fig. 3, The unstable
manifold (W*) of the decomposition point z} converges to the two stable
equilibrium points z! and z2. Also, it should be noted that x} is present on
the stability boundary of x! and 2.



We also need to show that under the transformation from (23) to (30), the
properties of the critical points remain unchanged. Theorem 10 illustrates the
correspondence of the critical points of the original system.

Theorem 10 (Critical Points and their correspondence): An equilibrium
point of (30) is hyperbolic if, and only if, the corresponding critical point f is
nondegenerate. Moreover, if T is a hyperbolic equilibrium point of (30), then

(1) T is a stable equilibrium point of (30) if and only if T is an isolated local
minimum. for (23)

(2) z is a source of (30) if and only if T is an isolated local mazimum for
(23)

(3) T is a decomposition point of (30) if and only if T is a saddle point for

(23)

Our approach takes advantage of TRUST-TECH (TRansformation Under
STability-reTaining Equilibria CHaracterization) to compute neighborhood
local optimal solutions on the surface using stability regions. Originally, the
basic idea of our algorithm was to find decomposition points on the practical
stability boundary. Since, each decomposition point connects two local optima
uniquely, it is important to obtain the saddle points from the given solution
and then move to the next solution through this decomposition point. The de-
tails of a stability boundary tracing algorithm to obtain decomposition points
on the stability boundary is presented in [6]. Though, this procedure gives a
guarantee that the local maximum is not revisited, the computational expense
for tracing the stability boundary and identifying the decomposition point is
high compared to the cost of applying the local solver directly using the exit
point without considering the decomposition point. However, it is beneficial to
use the saddle point tracing procedure developed in [6] for applications where
the local methods are very expensive. For most of the applications that arise
in machine learning domain, it is not necessary to obtain the saddle point be-
cause of the fact that the local methods are highly optimized for the specific
problem in hand and in general, these methods are much cheaper than tracing
the boundary using gradient computation.



3 Unsupervised Learning - Model-based Clustering

In this section, we will develop a stability region based algorithm for solving
the problem of mixture modeling. Finite mixtures allow a probabilistic model-
based approach to unsupervised learning [9] which plays an important role in
predictive data mining applications. One of the most popular methods used for
fitting mixture models to the observed data is the Ezpectation-Mazimization
(EM) algorithm which converges to the maximum likelihood estimate of the
mixture parameters locally [10,11]. The usual steepest descent, conjugate gra-
dient, or Newton-Raphson methods are too complicated for use in solving this
problem [12]. EM has become a popular method since it takes advantages of
problem specific properties. EM based approaches have been successfully used
to solve problems that arise in various other applications [13,14].

Without loss of generality, we will consider the problem of learning parameters
of Gaussian Mixture Models (GMM). Fig 4 shows data generated by three
Gaussian components with different mean and variance. Note that every data
point has a probabilistic (or soft) membership that gives the probability with
which it belongs to each of the components. Points that belong to component
1 will have high probability of membership for component 1. On the other
hand, data points belonging to components 2 and 3 are not well separated.
The problem of learning mixture models involves not only estimating the
parameters of these components but also finding the probabilities with which
each data point belongs to these components. Given the number of components
and an initial set of parameters, EM algorithm can be applied to compute the
optimal estimates of the parameters that maximize the likelihood of the data
given the estimates of these components. However, the main problem with
the EM algorithm is that it is a ‘greedy’ method which is very sensitive to
the given initial set of parameters [15]. To overcome this problem, a novel
two phase algorithm based on stability region analysis is proposed. The main
research concerns that motivated the new algorithm presented in this paper
are :

e EM algorithm for mixture modeling converges to a local maximum of the
likelihood function very quickly.

e There are many other promising local optimal solutions in the close vicinity
of the solutions obtained from the methods that provide good initial guesses
of the solution.

e Model selection criteria usually assumes that the global optimal solution
of the log-likelihood function can be obtained. However, achieving this is
computationally intractable.

e Some regions in the search space do not contain any promising solutions. The
promising and non-promising regions coexist and it becomes challenging to
avoid wasting computational resources to search in non-promising regions.

10



Component 3 #

Component 1

Fig. 4. Data generated by three Gaussian components. The problem of learning
mixture models is to obtain the parameters of these Gaussian components and the
membership probabilities of each datapoint.

Of all the concerns mentioned above, the fact that most of the local maxima are
not distributed uniformly [16] makes it important for us to develop algorithms
that not only help us to avoid searching in the low-likelihood regions but also
emphasize the importance of exploring promising subspaces more thoroughly.
This subspace search will also be useful for making the solution less sensitive
to the initial set of parameters. Here, we propose a novel two phase stability
region based expectation maximization (SREM) algorithm for estimating the
parameters of mixture models. Using concepts of dynamical systems and EM
algorithm simultaneously to exploit the problem specific features of the mix-
ture models, our algorithm obtains the optimal set of parameters by searching
for the global maximum on the likelihood surface in a systematic manner.

3.1  Relevant Background

Although EM and its variants have been extensively used for learning mixture
models, several researchers have approached the problem by identifying new
techniques that give good initialization. More generic techniques like deter-
ministic annealing [16], genetic algorithms [17] have been applied to obtain
a good set of parameters. Though, these techniques have asymptotic guaran-
tees, they are very time consuming and hence cannot be used for most of the
practical applications. Some problem specific algorithms like split and merge
EM [18], component-wise EM [11], greedy learning [19], incremental version
for sparse representations[20], parameter space grid [21] are also proposed in
the literature. Some of these algorithms are either computationally very ex-
pensive or infeasible when learning mixtures in high dimensional spaces [21].
Inspite of all the expense in these methods, very little effort has been taken to
explore promising subspaces within the larger parameter space. Most of these
algorithms eventually apply the EM algorithm to move to a locally optimal

11



set of parameters on the likelihood surface. Simpler practical approaches like
running EM from several random initializations, and then choosing the final
estimate that leads to the local maximum with higher value of the likelihood
are also successful to certain extent [22].

The dynamical system of the log-likelihood function reveals more information
on the neighborhood stability regions and their corresponding local maxima
[7]. Hence, the difficulties of finding good solutions when the error surface is
very rugged can be overcome by adding stability region based mechanisms to
escape out of the convergence zone of the local maxima. Though this method
might introduce some additional cost, one has to realize that existing ap-
proaches are much more expensive due to their stochastic nature. Specifically,
for a problem in this context, where there is a non-uniform distribution of
local maxima, it is difficult for most of the methods to search neighboring
regions [23].

3.2  Preliminaries

We now introduce some necessary preliminaries on mixture models, EM al-
gorithm and stability regions. First, we describe the notation used in this
section:

Table 1
Description of the Notations used

Notation Description

d number of features

n number of data points

k number of components

S total number of parameters
(C] parameter set

0; parameters of " component
Q; mixing weights for i*" component
X observed data

Z missing data

Yy complete data

t timestep for the estimates

12



3.2.1 Mixture Models

Lets assume that there are & Gaussians in the mixture model. The form of
the probability density function is as follows:

p(z|O) = Zazp (x]6;) (11)

where z = [x1, s, ..., 74]" is the feature vector of d dimensions. The ay’s repre-
sent the mizing weights. © represents the parameter set (o, v, ...ag, 01, 02, ...0k)
and p is a univariate Gaussian density parameterized by 6;(i.e. y; and o;):

x|0; =" ¢ ¥ 12
p(z]6;) o, (12)

Also, it should be noticed that being probabilities «; must satisfy

0<a;<1,Vi=1,.,k, and Zal—l (13)

=1

Given a set of n i.i.d samples X = {z("),2® . 2™} the log-likelihood corre-
sponding to a mixture is

log p(X|©) = log [ p(="|©)

J=1

= Z logz o p(x(j)|0i)

j=1 i=1

(14)

The goal of learning mixture models is to obtain the parameters O from a set
of n data points which are the samples of a distribution with density given by
(11). The Mazimum Likelihood Estimate (MLE) is given by :

Onre = arg méax { log p(X|©) } (15)

where © indicates the entire parameter space. Since, this MLE cannot be
found analytically for mixture models, one has to rely on iterative procedures
that can find the global maximum of log p(X|©). The EM algorithm described
in the next section has been used successfully to find the local maximum of
such a function [24].
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3.2.2  FExpectation Mazimization

The EM algorithm assumes X to be observed data. The missing part, termed
as hidden data, is a set of n labels Z = {z(V),z® .. z(™} associated with n
samples, indicating which component produced each sample [24] Each label
z) = [z ) .,z,gj)] is a binary vector where 2 = 1 and 2U) =0 Vm # i,
means the sample 2" was produced by the i** component. Now, the complete
log-likelihood (i.e. the one from which we would estimate © if the complete

data Y = { X, 2 } is

n k

log p(X, Z|0) = 2 g1T Lo pla? 6,) 1"
n k

log p(¥|©) =Zzz] log [ a; p(z6;) ] (16)
j=11=1

The EM algorithm produces a sequence of estimates {(:)(t),t =0,1,2,..} by
alternately applying the following two steps until convergence:

e E-Step : Compute the conditional expectation of the hidden data, given
X and the current estimate ©(t). Since log p(X, Z|0) is linear with respect
to the missing data Z, we simply have to compute the conditional expec-
tation W = E[Z|X,0(t)], and plug it into log p(X, Z|©). This gives the
@-function as follows:

Q(B16(t)) = Ezllog p(X, Z)|X,6(1)] (17)

Since Z is a binary vector, its conditional expectation is given by :

(18)

SE a(t)p(xD]0,(1))

where the last equality is simply the Bayes law («; is the a priori proba-
bility that zgj ) = 1), while wlu ) is the a posteriori probability that zi(j ) =1
given the observation z7).
e M-Step : The estimates of the new parameters are updated using the

following equation :

O(t+1) = arg mgX{Q(@, O(t)} (19)
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3.2.83 EM for GMMs

Several variants of the EM algorithm have been extensively used to solve
this problem. The convergence properties of the EM algorithm for Gaussian
mixtures are thoroughly discussed in [12]. The @ — function for GMM is given
by:

n k
; 1
QO16(1) = >_ > w![log
—1i— oV 2T
j=1:=1 (20)
(x(j) — ,U/z)g
- 952 + log ]
where |
L@G_ﬁ(‘”m—m(ﬂy
) _ ai(t) .
w; i 1 L(t)e_m(x(j)_m(t)p (2 )
=1 oy(t)
The maximization step is given by the following equation :
0 .
96, @(010() =0 (22)

where O}, is the parameters for the k" component. Because of the assumption
made that each data point comes from a single component, solving the above
equation becomes trivial. The updates for the maximization step in the case
of GMMs are given as follows:

n (4),.()
LW,
plt+1) = =5 ——7
=1 W;
n (4) j 2
U2<t + 1) _ Z:]:1 w; (x(J) :ul(t + 1))
v Zn w(])
=1 "4
1 & ;
a(t+1)=— sz(])
n i3

3.2.4  Stability Regions

This section mainly deals with the transformation of the original log-likelihood
function into its corresponding nonlinear dynamical system and introduces
some terminology pertinent to comprehend our algorithm. This transformation
gives the correspondence between all the critical points of the s-dimensional
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likelihood surface and that of its dynamical system. For the case of spherical
Gaussian mixtures with & components, we have the number of unknown pa-
rameters s = 3k—1. For convenience, the maximization problem is transformed
into a minimization problem defined by the following objective function :

max { log p(¥|O©) } = min { — log p(¥|©) }

= m@in f(©) (23)

where f(©) is assumed to be in C?*(R*, R).

The gradient system for the log-likelihood function in the case of spherical
Gaussians is constructed as follows :

(1 (2) - fu(t) 61(t) . o3 (t) cult) .. dpa ()]

of af af of af  of 1"
Oy~ Oup 0oy~ 0oy, Doy Doy

where

Vi=1,.,k
O j=1 ' 2012 ' o
0 n 1 @) — 14;)?
/ Zsz(J) —— 7@ 3#) Vi=1,..,k
of 1~ o)
= =S Vi=1,.k—1
do;  «; 2 v ! T

For simplicity, we show the construction of the gradient system for the case of
spherical Gaussians. It can be easily extended to the full covariance Gaussian
mixture case. It should be noted that only (k-1) « values are considered in
the gradient system because of the unity constraint. The dependent variable
oy, 1s written as follows:

k=1
ap=1->Y o (25)
=1
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Fig. 5. Various stages of our algorithm in (a) Parameter space - the solid lines indi-
cate the practical stability boundary. Points highlighted on the stability boundary
are the decomposition points. The dotted arrows indicate the convergence of the
EM algorithm. The dashed lines indicate the stability region phase. x1 and xo are
the exit points on the practical stability boundary (b) Different variables in the
function space.

3.8 Our Algorithm

Our framework consists mainly of two phases which are repeated in the promis-
ing subspaces of the parameter search space. It is more effective to use our
algorithm at only these promising subspaces which are usually obtained by
stochastic global methods. The first phase is the local phase (or the EM phase)
where the promising solutions are refined to the corresponding locally optimal
parameter set. The second phase which is the main contribution of this pa-
per, is the stability region phase, where the exit points are computed and the
neighborhood solutions are systematically explored through these exit points.
Fig. 5 shows the different steps of our algorithm both in (a) the parameter
space and (b) the function space.

This approach can be treated as a hybrid between global methods for ini-
tialization and the EM algorithm which gives the local maxima. One of the
main advantages of our approach is that it searches the parameter space more
deterministically. This approach differs from traditional local methods by com-
puting multiple local solutions in the neighborhood region. This also enhances
user flexibility by allowing the users to choose between different sets of good
clusterings. Though global methods give promising subspaces, it is important
to explore this subspace more thoroughly especially in problems like parameter
estimation. Algorithm 1 describes our approach.

In order to escape out of this local maximum, our method needs to compute
certain promising directions based on the local behaviour of the function.
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Algorithm 1 Stability Region based EM Algorithm
Input: Parameters ©, Data X, tolerance 7, Step 5,
Output: O,/

Algorithm:
Apply global method and store the q promising solutions ©;,;
{©1,0,,..,0,} Initialize E= ¢

while ©,,;; # ¢ do
Choose ©, € Gim'ta set O, = @th\{GZ}
LM; = EM(©;, X, 1) E=FU{LM;}
Generate promising direction vectors d; from LM;
for each d; do
Compute Exit Point (X;) along d; starting from LM; by evaluating the
log-likelihood function given by (14)
New; = EM(X; +¢€-dj, X,T)
if new; ¢ E then
E = FU New;
end if
end for
end while
Oure = maz{val(E;)}

One can realize that generating these promising directions is one of the im-
portant aspects of our algorithm. Surprisingly, choosing random directions
to move out of the local maximum works well for this problem. One might
also use other directions like eigenvectors of the Hessian or incorporate some
domain-specific knowledge (like information about priors, approximate loca-
tion of cluster means, user preferences on the final clusters) depending on the
application that they are working on and the level of computational expense
that they can afford. We used random directions in our work because they
are very cheap to compute. Once the promising directions are generated, exit
points are computed along these directions. Ezit points are points of intersec-
tion between any given direction and the practical stability boundary of that
local maximum along that particular direction. If the stability boundary is
not encountered along a given direction, it is very likely that one might not
find any new local maximum in that direction. With a new initial guess in
the vicinity of the exit points, EM algorithm is applied again to obtain a new
local maximum.

3.4 Implementation Details

Our program is implemented in MATLAB and runs on Pentium IV 2.8 GHz
machine. The main procedure implemented is TT_EM described in Algorithm
4. The algorithm takes the mixture data and the initial set of parameters as
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input along with step size for moving out and tolerance for convergence in
the EM algorithm. It returns the set of parameters that correspond to the
Tier-1 neighboring local optimal solutions. The procedure ewval returns the
log-likelihood score given by (14). The Gen_Dir procedure generates promis-
ing directions from the local maxima. Exit points are obtained along these
generated directions. The procedure update moves the current parameter to
the next parameter set along a given k' direction Dir[k]. Some of the di-
rections might have one of the following two problems: (i) Exit points might
not be obtained in these directions. (ii) Even if the exit point is obtained it
might converge to a less promising solution. If the exit points are not found
along these directions, search will be terminated after Fval_M AX number of
evaluations. For all exit points that are successfully found, EM procedure is
applied and all the corresponding neighborhood set of parameters are stored
in the Params| ] !. Since, different parameters will be of different range, care
must be taken while multiplying with the step sizes. It is important to use
the current estimates to get an approximation of the step size with which one
should move out along each parameter in the search space. Finally, the solu-
tion with the highest likelihood score amongst the original set of parameters
and the Tier-1 solutions is returned.

Ry [ Ly
S
NG O/ N L NED
(a) (b) (c) ()

Fig. 6. Parameter estimates at various stages of our algorithm on the three com-
ponent Gaussian mixture model (a) Poor random initial guess (b) Local maximum
obtained after applying EM algorithm with the poor initial guess (c¢) Exit point
obtained by our algorithm (d) The final solution obtained by applying the EM
algorithm to the initial point in the neighboring stability region.

3.5 Results and Discussion

Our algorithm has been tested on both synthetic and real datasets. The initial
values for the centers and the covariances were chosen uniformly random.
Uniform priors were chosen for initializing the components. For real datasets,
the centers were chosen randomly from the sample points.

I To ensure that the new initial points are in the different stability regions, one
should move along the directions ‘¢’ away from the exit points.
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Algorithm 2 Params| | TT_EM (Pset, Data, Tol, Step)

Val = eval(Pset)
Dir| | = Gen_Dir(Pset)
Eval_ MAX = 500
for k =1 to size(Dir) do
Paramslk] = Pset ExtPt = OFF
PrevVal =Val Cnt=0
while (! ExtPt) && (Cnt < Eval_MAX) do
Paramsl|k] = update( Paramsl|k|, Dir[k], Step)
Cnt = Cnt + 1
Next-Val = eval(Paramsl[k])
if (Next-Val > Prev-Val) then

ExtPt =ON
end if
Prev_Val = Next_Val
end while

if count < Eval_MAX then
Params[k] = update( Paramslk], Dir[k], ASC)
Paramslk] = EM (Params|k], Data, Tol)
else
Paramsl[k] = NULL
end if
end for
Return mazx(eval(Params] |))
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Fig. 7. Graph showing likelihood vs Evaluations. A corresponds to the original local
maximum (L=-3235.0). B corresponds to the exit point (L=-3676.1). C corresponds
to the new initial point in the neighboring stability region (L=-3657.3) after moving

out by ‘¢’. D corresponds to the new local maximum (L=-3078.7).
3.5.1 Synthetic Datasets
A simple synthetic data with 40 samples and 5 spherical Gaussian components

was generated and tested with our algorithm. Priors were uniform and the
standard deviation was 0.01. The centers for the five components are given as

20



follows: p1 = [0.3 0.3]7, e = [0.5 0.5]7, pz = [0.7 0.7)7, pg = [0.3 0.7]7 and
s = 0.7 0.3]7.

The second dataset was that of a diagonal covariance case containing n = 900
data points. The data generated from a two-dimensional, three-component
Gaussian mixture distribution with mean vectors at [0 — 2], [0 0]7,[0 2]T
and same diagonal covariance matrix with values 2 and 0.2 along the diagonal
[16]. All the three mixtures have uniform priors. Fig. 6 shows various stages
of our algorithm and demonstrates how the clusters obtained from existing
algorithms are improved using our algorithm. The initial clusters obtained are
of low quality because of the poor initial set of parameters. Our algorithm
takes these clusters and applies the stability region step and the EM step
simultaneously to obtain the final result. Fig. 7 shows the value of the log-
likelihood during the stability region phase and the EM iterations.

In the third synthetic dataset, a more complicated overlapping Gaussian mix-
tures are considered [11]. The parameters are as follows: iy = py = [—4 — 4|7
sz =1[22]"T and py = [-1 —6]7. a; = ay = a3 = 0.3 and ay = 0.1.

1 0.5 6 —2
Y= Yp =
05 1 -2 6
2 -1 0.125 0
Yy = Yy =
-1 2 0 0.125

Table 2
Performance of our algorithm on an average of 100 runs on various synthetic and
real datasets

Dataset Samples Clusters Features EM (mean + std) SREM (mean =+ std)
Spherical 40 5 2 38.07+2.12 43.55+0.6
Elliptical 900 3 2 -3235+0.34 -3078.7+0.03
Full covariance 1 500 4 2 -2345.5 +175.13 -2121.9+ 21.16
Full covariance 2 2000 4 2 -9309.9 £694.74 -8609.7 £37.02
Iris 150 3 4 -198.13+£27.25 -173.63+11.72
Wine 178 3 13 -1652.74+1342.1 -1618.3+1349.9

3.5.2 Real Datasets

Two real datasets obtained from the UCI Machine Learning repository [25]
were also used for testing the performance of our algorithm. Most widely used
Iris data with 150 samples, 3 classes and 4 features was used. Wine data set
with 178 samples was also used for testing. Wine data had 3 classes and 13
features. For these real data sets, the class labels were deleted thus treating
it as unsupervised learning problem. Table 5.4.2 summarizes our results over
100 runs. The mean and the standard deviations of the log-likelihood values
are reported. The traditional EM algorithm with random starts is compared
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against our algorithm on both synthetic and real data sets. Our algorithm not
only obtains higher likelihood value but also produces it with high confidence.
The low standard deviation of our results indicates the robustness of obtaining
the global maximum. In the case of the wine data, the improvements with our
algorithm are not much significant compared to the other datasets. This might
be due to the fact that the dataset might not have Gaussian components. Our
method assumes that the underlying distribution of the data is mixture of
Gaussians. Table 3 gives the results of SREM compared with other methods
like split and merge EM and k-means+EM proposed in the literature.

Table 3
Comparison of SREM with other methods

Method Elliptical Iris

RS+EM -3235 £ 14.2 | -198 £+ 27

K-Means+EM | -3195 + 54 -186 = 10

SMEM -3123 £ 54 | -1785 £ 6
SREM -3079 £ 0.03 | -173.6 £ 11

3.5.3 Discussion

It will be effective to use our algorithm for those solutions that appear to be
promising. Due to the nature of the problem, it is very likely that the nearby
solutions surrounding the existing solution will be more promising. One of the
primary advantages of our method is that it can be used along with other
popular methods available and improve the quality of the existing solutions.
In clustering problems, it is an added advantage to perform refinement of
the final clusters obtained. Most of the focus in the literature was on new
methods for initialization or new clustering techniques which often do not take
advantage of the existing results and completely start the clustering procedure
“from scratch”. Though shown only for the case of multivariate Gaussian
mixtures, our technique can be effectively applied to any parametric finite
mixture model.

Table 4 summarizes the average number of iterations taken by the EM algo-
rithm for the convergence to the local optimal solution. We can see that the
most promising solution produced by our SREM algorithm converges much
faster. In other words, our method can effectively take advantage of the fact
that the convergence of the EM algorithm is much faster for high quality so-
lutions. This is an inherent property of the EM algorithm when applied to the
mixture modeling problem. We exploit this property of the EM for improving
the efficiency of our algorithm. Hence, for obtaining the Tier-1 solutions using
our algorithm, the threshold for the number of iterations can be significantly
lowered.
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Table 4

Number of iterations taken for the convergence of the best solution.

Dataset Avg. no. of No. of iterations
iterations | for the best solution
Spherical 126 73
Elliptical 174 86
Full covariance 292 173

Our algorithm can be easily extended to other widely used EM related prob-
lems like k-means clustering,training Hidden Markov Models, Mixture of Fac-
tor Analyzers, Probabilistic Principal Component Analysis, Bayesian Net-
works etc. We would also like to extend these techniques to Markov Chain
Monte Carlo methods like Gibbs sampling for the estimation of mixture mod-

els.
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4 Pattern Discovery - Motif Finding Problem

As a case study of the algorithm developed in the previous section, we de-
scribe its application to the motif finding problem in bioinformatics. In fact,
we do not have to restrict the proposed algorithm to the case of mixture mod-
els. Here, we will demonstrate its capability in obtaining promising solutions
on general likelihood surfaces. The main goal of the motif finding problem is
to detect novel, over-represented unknown signals in a set of sequences (e.g.
transcription factor binding sites in a genome). The most widely used algo-
rithms for finding motifs obtain a generative probabilistic representation of
these over-represented signals and try to discover profiles that maximize the
information content score. Although these profiles form a very powerful rep-
resentation of the signals, the major difficulty arises from the fact that the
best motif corresponds to the global maximum of a non-convex continuous
function. Popular algorithms like Expectation Maximization (EM) and Gibbs
sampling tend to be very sensitive to the initial guesses and are known to
converge to the nearest local maximum very quickly [26]. In order to improve
the quality of the results, EM is used with multiple random starts or any other
powerful stochastic global methods that might yield promising initial guesses
(like projection algorithms). Global methods do not necessarily give initial
guesses in the convergence region of the best local maximum but rather sug-
gest that a promising solution is in the neighborhood region. In this section,
we apply the SREM algorithm proposed in the previous section to this motif
finding problem. It has the capability to search the neighborhood regions of
the initial alignment in a systematic manner to explore the multiple local op-
timal solutions. This effective search is achieved by transforming the original
optimization problem into its corresponding dynamical system and estimating
the practical stability boundary of the local maximum.

GAATTCATACCAGATCACCGGATTCCCGAICTCCAAATGTGTCCCCCTCACAC
TCCACCGATTACCGTICTTCTGCTCTTAGACCACTCTACCCTATTCCCCACACT
CACCGGAGCCAAAGCCGCGGCCCTTCCGTTICCGATTACCGAJAAAGACCCCA
CCCGTAGGTGGCAAGCTAGCTTAAGTAACGCCACTTCGATTAACGAGGAAA
AATACATAACTGACCTATTATCGAIGTTCAGATCAAGGTCAGGAACAAAGAA
ACA|[CCGATTACCGTJAACCGTAAGATARTGGTATCGATACGTAGACAGTTTA

Fig. 8. Synthetic DNA sequences containing some instance of the pattern ‘CCGAT-
TACCGA’ with a maximum number of 2 mutations. The motifs in each sequence
are highlighted in the box. We have a (11,2) motif where 11 is the length of the
motif and 2 is the number of mutations allowed.

Recent developments in DNA sequencing have allowed biologists to obtain
complete genomes for several species. However, knowledge of the sequence
does not imply the understanding of how genes interact and regulate one an-
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other within the genome. Many transcription factor binding sites are highly
conserved throughout the sequences and the discovery of the location of such
binding sites plays an important role in understanding gene interaction and
gene regulation. Although there are several variations of the motif finding
algorithms, the problem discussed here is defined as follows: without any pre-
vious knowledge of the consensus pattern, discover all the occurrences of the
motifs and then recover a pattern for which all of these instances are within a
given number of mutations (or substitutions). Despite the significant amount
of literature available on the motif finding problem, many do not exploit the
probabilistic models used for motif refinement [27,28]. In this section, we con-
sider a precise version of the motif discovery problem in computational biology
as discussed in [29,30]. The planted (1,d) motif problem [30] considered here is
described as follows: Suppose there is a fixed but unknown nucleotide sequence
M ( the motif) of length [. The problem is to determine M, given ¢ sequences
with ¢; being the length of the i"* sequence and each containing a planted
variant of M. More precisely, each such planted variant is a substring that
is M with exactly d point substitutions (see fig. 8). More details about the
complexity of the motif finding problem is given in [31]. A detailed assessment
of different motif finding algorithms was published recently in [32].

4.1 Motif Finding Literature

Existing approaches used to solve the motif finding problem can be classified
into two main categories [33]. The first group of algorithms utilizes a gen-
erative probabilistic representation of the nucleotide positions to discover a
consensus DNA pattern that maximizes the information content score. In this
approach, the original problem of finding the best consensus pattern is formu-
lated as finding the global maximum of a continuous non-convex function. The
main advantage of this approach is that the generated profiles are highly rep-
resentative of the signals being determined [34]. The disadvantage, however,
is that the determination of the “best” motif cannot be guaranteed and is
often a very difficult problem since finding global maximum of any continuous
non-convex function is a challenging problem. Current algorithms converge to
the nearest local optimum instead of the global solution. Gibbs sampling [27],
MEME [28], greedy CONSENSUS algorithm [35] and HMM based methods
[36] belong to this category.

The second group uses patterns with ‘mismatch representation’” which define
a signal to be a consensus pattern and allow up to a certain number of mis-
matches to occur in each instance of the pattern. The goal of these algorithms
is to recover the consensus pattern with the highest number of instances. These
methods view the representation of the signals as discrete and the main ad-
vantage of these algorithms is that they can guarantee that the highest scoring

25



pattern will be the global optimum for any scoring function. The disadvantage,
however, is that consensus patterns are not as expressive of the DNA signal as
profile representations. Recent approaches within this framework include Pro-
jection methods [29,37], string based methods [30], Pattern-Branching [38],
MULTIPROFILER [39] and other branch and bound approaches [40,33].

A hybrid approach could potentially combine the expressiveness of the profile
representation with convergence guarantees of the consensus pattern. An ex-
ample of a hybrid approach is the Random Projection [29] algorithm followed
by EM algorithm [28]. It uses a global solver to obtain promising alignments
in the discrete pattern space followed by further local solver refinements in
continuous space[41,42]. Currently, only few algorithms take advantage of a
combined discrete and continuous space search [29,33,37]. We consider the
profile representation of the motif and a new hybrid algorithm is developed to
escape out of the local maxima of the likelihood surface.

Some motivations to develop the new SREM algorithm are :

e A motif refinement stage is vital and popularly used by many pattern based
algorithms (like PROJECTION, MITRA etc) which try to find optimal
motifs.

e The traditional EM algorithm used in the context of motif finding converges
very quickly to the nearest local optimal solution (within 5-8 iterations).

e There are many other promising local optimal solutions in the close vicinity
of the profiles obtained from the global methods.

In spite of the importance placed on obtaining a global optimal solution in the
context of motif finding, little work has been done in the direction of finding
such solutions [43]. There are several proposed methods to escape out of the
local optimal solution to find better solutions in machine learning [1] and
optimization [44] related problems. Most of them are stochastic in nature and
usually rely on perturbing either the data or the hypothesis. These stochastic
perturbation algorithms are inefficient because they will sometimes miss a
neighborhood solution or obtain an already existing solution. To avoid these
problems, we introduce a novel optimization framework that has a better
chance of avoiding sub-optimal solutions. It systematically escapes out of the
convergence region of a local maximum to explore the existence of other nearby
local maxima. Our method is primarily based on some fundamental principles
of finding exit points on the stability boundary of a nonlinear continuous
function. The underlying theoretical details of our method are described in
[7,4].
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4.2 Preliminaries

We will first describe our problem formulation and the details of the EM
algorithm in the context of motif finding problem. We will then describe some
details of the dynamical system of the log-likelihood function which enables
us to search for the nearby local optimal solutions.

4.2.1  Problem Formulation

Some promising initial alignments are obtained by applying projection meth-
ods or random starts on the entire dataset. Typically, random starts are used
because they are not expensive. Most promising set of alignments are consid-
ered for further processing. These initial alignments are then converted into
profile representation.

Table 5
A count of nucleotides A, T, G, C at each position K = 1..[ in all the sequences of
the data set. K = 0 denotes the background count.

J 1 k=0|k=1|k=2|K=3|k=4]| ... | k=1
Al Cop | Cip | Co C31 Cs1 | . | Cia
T | Co2 | Ci2 | Cop Cs2 Ci2 | . | Ci2
G| Co3 | Ci3 | Co3 | C33 Csz | . | Ci3
C| Coa | Cra | Coy C34 Ciga | - | Cia

Let t be the total number of sequences and n be the average length of the
sequences. Let S = {51, 55...5;} be the set of ¢ sequences. Let P be a single
alignment containing the set of segments { Py, P, ..., P;}. [ is the length of the
consensus pattern. For further discussion, we use the following variables

i =1..t — — for t sequences
E=1..1 — — for positions within an [-mer
j € {A,T,G,C} — — for each nucleotide

The count matrix can be constructed from the given alignments as shown in
Table 5. We define C ; to be the non-position specific background count of
each nucleotide in all of the sequences where j € {A,T,C, G} is the running
total of nucleotides occurring in each of the [ positions. Similarly, Cj ; is the
count of each nucleotide in the k" position (of the [ —mer) in all the segments
in P.
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26
Yseiaracoy Cog (26)

Qo =

Ck,j + b]'

Qr,; =
Tt + Y seiarcoy bs

(27)

Eq. (26) shows the background frequency of each nucleotide where b; is known
as the Laplacian or Bayesian correction and is equal to d*()o ; where d is some
constant usually set to unity. Eq. (27) gives the weight assigned to the type
of nucleotide at the k" position of the motif.

A Position Specific Scoring Matrix (PSSM) can be constructed from one set
of instances in a given set of ¢ sequences. From (26) and (27), it is obvious
that the following relationship holds:

Y Q=1 Vk=0,1,2,...1 (28)
je{AT,G,C}

For a given k value in (28), each @) can be represented in terms of the other
three variables. Since the length of the motif is [, the final objective function
(i.e. the information content score) would contain 3/ independent variables?.

To obtain the score, every possible [ — mer in each of the t sequences must
be examined. This is done so by multiplying the respective Q); ;/Qo; dictated
by the nucleotides and their respective positions within the [ — mer. Only
the highest scoring [ — mer in each sequence is noted and kept as part of the
alignment. The total score is the sum of all the best scores in each sequence.

t t

A(Q) = > _log(A)i = > _log (,ﬁl %:) -

i=1 i=1 i (29)

Q;gj ; is the ratio of the nucleotide probability to the corresponding background
probability, i.e. Q. ;/Qp. Log(A); is the score at each individual i"* sequence
where t is the total number of sequences. In equation (29), we see that A
is composed of the product of the weights for each individual position k.

2 Although, there are 4l variables in total, because of the constraints obtained
from (28), the parameter space will contain only 3! independent variables. Thus,
the constraints help in reducing the dimensionality of the search problem.
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We consider this to be the Information Content (IC) score which we would
like to maximize. A(Q) is the non-convex 3!/ dimensional continuous function
for which the global maximum corresponds to the best possible motif in the
dataset. EM refinement performed at the end of a combinatorial approach has
the disadvantage of converging to a local optimal solution [45]. Our method
improves the procedure for refining motif by understanding the details of the
stability boundaries and by trying to escape out of the convergence region of
the EM algorithm.

4.2.2  Hessian Computation and Dynamical System for the Scoring Function

In order to present our algorithm, we have defined the dynamical system cor-
responding to the log-likelihood function and the PSSM. The key contribution
here is the development of this nonlinear dynamical system which will enable
us to realize the geometric and dynamic nature of the likelihood surface. We
construct the following gradient system in order to locate critical points of the
objective function (29):

Qt) = ~VAQ) (30)

One can realize that this transformation preserves all of the critical points [7].
Now, we will describe the construction of the gradient system and the Hessian
in detail. In order to reduce the dominance of one variable over the other,
the values of the each of the nucleotides that belong to the consensus pattern
at the position k& will be represented in terms of the other three nucleotides
in that particular column. Let Pj, denote the k' position in the segment P;.
This will also minimize the dominance of the eigenvector directions when the
Hessian is obtained. The variables in the scoring function are transformed into
new variables described in Table 6.

t 1
A(Q) = Z Z log fik(w3k—27w3k—1a w3l<:)i (31)
i=1k=1

where fi, can take the values {wsg_2, wag_1, w3k, 1 — (W3k—2 + w31 + w3x) }
depending on the P, value.

The first derivative of the scoring function is a one dimensional vector with 3/
elements.

0A 0A 0A o4 1"

8w1 8w2 871)3 S 8103[

VA= (32)
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Table 6
A count of nucleotides j € {A,T,G,C} at each position k = 1..[ in all the sequences
of the data set. C}, is the k** nucleotide of the consensus pattern which represents

the nucleotide with the highest value in that column. Let the consensus pattern be
GACT...G and b; be the background.

Jlk=blk=1|k=2|K=3|k=4| ... | k=1
Al ba wy Cs wr Wi | e | W32
T br wWo Wy wg Cy e | wgp—
G ba & ws Wy w11 C
c| be w3 we Cs wiz | e | w3

and each partial derivative is given by

ofi
0A ¢ Py

8wp i—1 fir(Wak—2, Wak_1, W)

(33)

Vp=1,2..3l and k = round(p/3)+1

The Hessian V2A is a block diagonal matrix of block size 3X3. For a given
sequence, the entries of the 3X3 block will be the same if that nucleotide be-
longs to the consensus pattern (Cy). The gradient system is mainly obtained
for enabling us to identify the stability boundaries and stability regions on
the likelihood surface. The theoretical details of these concepts are published
in [7]. The stability region of each local maximum is an approximate conver-
gence zone of the EM algorithm. If we can identify all the saddle points on the
stability boundary of a given local maximum, then we will be able to find all
the tier-1 local maxima. However, finding all of the saddle points is computa-
tionally intractable and hence we have adopted a heuristic by generating the
eigenvector directions of the PSSM at the local maximum. The next section
details our approach and explains the different phases of our algorithm. In this
problem, we will not trace the stability boundary for obtaining saddle points
and hence, we call this as “Exit-point” framework.

4.8 Stability Region based Exit-point Framework

Our framework consists of the following three phases:

e Global phase in which the promising solutions in the entire search space are
obtained.

e Refinement phase where a local method is applied to the solutions obtained
in the previous phase in order to refine the profiles.
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e Fxit phase where the exit points are computed and the Tier-1 and Tier-2
solutions are explored systematically.

In the global phase, a branch and bound search is performed on the entire
dataset. All of the profiles that do not meet a certain threshold (in terms of a
given scoring function) are eliminated in this phase. The promising patterns
obtained are transformed into profiles and local improvements are made to
these profiles in the refinement phase. The consensus pattern is obtained from
each nucleotide that corresponds to the largest value in each column of the
PSSM. The 3l variables chosen are the nucleotides that correspond to those
that are not present in the consensus pattern. Because of the probability con-
straints discussed in the previous section, the largest weight can be represented
in terms of the other three variables.

To solve (29), current algorithms begin at random initial alignment positions
and attempt to converge to an alignment of [ —mers in all of the sequences that
maximize the objective function. In other words, the I — mer whose log(A);
is the highest (with a given PSSM) is noted in every sequence as part of the
current alignment. During the maximization of A(Q) function, the probability
weight matrix and hence the corresponding alignments of [—mers are updated.
This occurs iteratively until the PSSM converges to the local optimal solution.
The consensus pattern is obtained from the nucleotide with the largest weight
in each position (column) of the PSSM. This converged PSSM and the set of
alignments correspond to a local optimal solution. The exit phase where the
neighborhood of the original solution is explored in a systematic manner is
shown below:

Input: Local Maximum (A).

Output: Best Local Maximum in the neighborhood region.

Algorithm:

Step 1: Construct the PSSM for the alignments corresponding to the local
maximum (A) using Egs.(26) and (27).

Step 2: Calculate the eigenvectors of the Hessian matrix for this PSSM.

Step 3: Find exit points (e;) on the practical stability boundary along each
eigenvector direction.

Step 4: For each of the exit points, the corresponding Tier-1 local maxima
(ay;) are obtained by applying the EM algorithm after the ascent step.

Step 5: Repeat this process for promising Tier-1 solutions to obtain Tier-2
(az;) local maxima.

Step 6: Return the solution that gives the maximum information content score
Of {A, a4, G,Qj}.

To escape out of this local optimal solution, our approach requires the compu-
tation of a Hessian matrix (i.e. the matrix of second derivatives) of dimension
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(31)? and the 3l eigenvectors of the Hessian. The main reasons for choosing
the eigenvectors of the Hessian as search directions are:

e Computing the eigenvectors of the Hessian is related to finding the directions
with extreme values of the second derivatives, i.e., directions of extreme
normal-to-isosurface change.

e The eigenvectors of the Hessian will form the basis vectors for the search di-
rections. Any other search direction can be obtained by a linear combination
of these directions.

e This will make our algorithm deterministic since the eigenvector directions
are always unique.

The value of the objective function is evaluated along these eigenvector di-
rections with some small step size increments. Since the starting position is
a local optimal solution, one will see a steady decline in the function value
during the initial steps; we call this the descent stage. Since the Hessian is
obtained only once during the entire procedure, it is more efficient compared
to Newton’s method where an approximate Hessian is obtained for every it-
eration. After a certain number of evaluations, there may be an increase in
the value indicating that the current point is out of the convergence region
of the local maximum. The point along this direction where A(Q) has the
lowest value is called the exit point. Once the exit point has been reached, few
more evaluations are made in the direction of the same eigenvector to ensure
that one has left the original region of convergence. This procedure is clearly
shown in Fig 9. Applying the local method directly from the exit point may
give the original local maximum. The ascent stage is used to ensure that the
new guess is in a different convergence zone. Hence, given the best local max-
imum obtained using any current local methods, this framework allows us to
systematically escape out of the local maximum to explore surrounding local
maxima. The complete algorithm is shown below :

New
PSSM
~
® EM 7~
2 . Local /
& Original Solver 7
- PSSM ’
H /
E /
c /
2 ’
< /
/7
Descent /
Stage
Ascent
Stage
A e i

Fig. 9. A summary of escaping out of the local optimum to the neighborhood local
optimum. Observe the corresponding trend of A(Q) at each step.
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Input: The DNA sequences, length of the motif (1), Maximum Number of
Mutations (d)

Output: Motif (s)

Algorithm:

Step 1: Given the sequences, apply Random Projection algorithm to obtain
different set of alignments.

Step 2: Choose the promising buckets and apply EM algorithm to refine these
alignments.

Step 3: Apply the exit point method to obtain nearby promising local optimal
solutions.

Step 4: Report the consensus pattern that corresponds to the best alignments
and their corresponding PSSM.

The new framework can be treated as a hybrid approach between global and
local methods. It differs from traditional local methods by computing multiple
local solutions in the neighborhood region in a systematic manner. It differs
from global methods by working completely in the profile space and searching
a subspace efficiently in a deterministic manner. For a given non-convex func-
tion, there is a massive number of convergence regions that are very close to
each other and are separated from one another in the form of different basins
of attraction. These basins are effectively modeled by the concept of stability
regions.

4.4 Implementation Details

Our program was implemented on Red Hat Linux version 9 and runs on a
Pentium IV 2.8 GHz machine. The core algorithm that we have implemented
is XP_EM described in Algorithm 3. X P_E M obtains the initial alignments
and the original data sequences along with the length of the motif. It returns
the best motif that is obtained in the neighboring region of the sequences. This
procedure constructs the PSSM, performs EM refinement, and then computes
the Tier-1 and Tier-2 solutions by calling the procedure Next_Tier. The eigen-
vectors of the Hessian were computed using the source code obtained from
[46]. Next_Tier takes a PSSM as an input and computes an array of PSSMs
corresponding to the next tier local maxima using the exit point methodology.

Given a set of initial alignments, Algorithm 3 will find the best possible motif
in the neighborhood space of the profiles. Initially, a PSSM is computed using
construct_PSSM from the given alignments. The procedure Apply EM will
return a new PSSM that corresponds to the alignments obtained after the EM
algorithm has been applied to the initial PSSM. The details of the procedure
Next_Tier are given in Algorithm 4. From a given local solution (or PSSM),
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Algorithm 3 Motif X P_EM (init_aligns, seqs, )
PSSM = Construct_.PSSM (init_aligns)
New_PSSM = Apply EM(PSSM, seqs)
TIER1 = Next Tier(seqs, New_PSSM,]I)
for i =1 to 3l do

if TIER1[i] <> zeros(4l) then
TIER2[i][ | = Next_Tier(seqs, TIER1[i],l)
end if

end for

Return best(PSSM,TIER1, TIER2)

Next Tier will compute all the 3] new PSSMs in the neighborhood of the
given local optimal solution. The second tier patterns are obtained by calling
the Next_Tier from the first tier solutions 3. Finally, the pattern with the
highest score amongst all the PSSMs is returned.

Algorithm 4 PSSMs| | Next_Tier(seqs, PSSM,I)
Score = eval(PSSM)
Hess = Construct_Hessian(PSSM)
FEig| | = Compute_FEigVec(Hess)
MAX _Iter =100
for £ =1 to 3l do
PSSMslk| = PSSM Count =0
Old_Score = Score ep_reached = FALSFE
while (! ep_reached) && (Count < MAX _Iter) do
PSSMs[k| = update(PSSMs[k|, Eig[k], step)
Count = Count + 1
New_Score = eval(PSSMslk])
if (New_Score > Old_Score) then
ep_reached = TRUFE
end if
Old_Score = New_Score
end while
if count < MAX _Iter then
PSSMslk] = update(PSSMs[k], Eiglk], ASC')
PSSMslk] = Apply EM(PSSMs[k], Seqs)
else
PSSMs[k| = zeros(4l)
end if
end for

Return PSSMs| |

3 New PSSMs might not be obtained for certain search directions. In those cases, a
zero vector of length 47 is returned. Only those new PSSMs which do not have this
value will be used for any further processing.
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Fig. 10. Diagram illustrates the exit point method of escaping from the original
solution (A) to the neighborhood local optimal solutions (ai;) through the corre-
sponding exit points (ej;). The dotted lines indicate the local convergence of the
EM algorithm.

The procedure Next Tier takes a PSSM, applies the Exit-point method and
computes an array of PSSMs that corresponds to the next tier local optimal
solutions. The procedure eval evaluates the scoring function for the PSSM us-
ing (29). The procedures Construct_Hessian and Compute_EigV ec compute
the Hessian matrix and the eigenvectors respectively. M AX _iter indicates the
maximum number of uphill evaluations that are required along each of the
eigenvector directions. The neighborhood PSSMs will be stored in an array
variable PSSMs| |. The original PSSM is updated with a small step until an
exit point is reached or the number of iterations exceeds the M AX _[ter value.
If the exit point is reached along a particular direction, some more iterations
are run to guarantee that the PSSM has exited the original stability region
and has entered a new one. The EM algorithm is then used during this ascent
stage to obtain a new PSSM 4.

The initial alignments are converted into the profile space and a PSSM is
constructed. The PSSM is updated (using the EM algorithm) until the align-
ments converge to a local optimal solution. The Exit-point methodology is
then employed to escape out of this local optimal solution to compute nearby
first tier local optimal solutions. This process is then repeated on promising
first tier solutions to obtain second tier solutions. As shown in Fig. 11, from

4 For completeness, the entire algorithm has been shown in this section. How-
ever, during the implementation, several heuristics have been applied to reduce the
running time of the algorithm. For example, if the first tier solution is not very
promising, it will not be considered for obtaining the corresponding second tier
solutions.
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GACCTACTGTAGCGA
A(Q)=164.42

GACCTACTATAGTGA
A(Q)=164.64

GACCTACTGTATAGA
A(Q)=159.8

GACCTACTATAGCGA
A(Q)=163.375

TACCTACAGTAGAGA
A(Q)=1668

GACTTACAATAGAGA
A(Q=167.81

GACCTACCATAGTGA
A(Q)=164.79

TACCTACCGTAGTGA
A(Q)=166.11

Fig. 11. 2-D illustration of first tier improvements in a 3/ dimensional objective
function. The original local maximum has a score of 163.375. The various Tier-1
solutions are plotted and the one with highest score (167.81) is chosen.

the original local optimal solution, various exit points and their corresponding
new local optimal solutions are computed along each eigenvector direction.
Sometimes two directions may yield the same local optimal solution. This can
be avoided by computing the saddle point corresponding to the exit point on
the stability boundary [6]. There can be many exit points, but there will only
be a unique saddle point corresponding to the new local minimum. However, in
high dimensional problems, this is not very efficient. Hence, we have chosen to
compute the exit points. For computational efficiency, the Exit-point approach
is only applied to promising initial alignments (i.e. random starts with higher
Information Content score). Therefore, a threshold A(Q) score is determined
by the average of the three best first tier scores after 10-15 random starts; any
current and future first tier solution with scores greater than the threshold is
considered for further analysis. Additional random starts are carried out in
order to aggregate at least ten first tier solutions. The Exit-point method is
repeated on all first tier solutions above a certain threshold to obtain second
tier solutions.

4.5  FExperimental Results

Experiments were performed on both synthetic data and real data. Two differ-
ent methods were used in the global phase: random start and random projec-
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tion. The main purpose of our work is not to demonstrate that our algorithm
can outperform the existing motif finding algorithms. Rather, the main work
here focuses on improving the results that are obtained from other efficient
algorithms. We have chosen to demonstrate the performance of our algorithm
on the results obtained from the random projection method which is a pow-
erful global method that has outperformed other traditional motif finding
approaches like MEME, Gibbs sampling, WINNOWER, SP-STAR, etc. [29].
Since the comparison was already published, we mainly focus on the perfor-
mance improvements of our algorithm as compared to the random projection
algorithm. For the random start experiment, a total of N random numbers
between 1 and (t — [ + 1) corresponding to initial set of alignments are gener-
ated. We then proceeded to evaluate our Exit-point methodology from these
alignments.

4.5.1 Synthetic Datasets

The synthetic datasets were generated by implanting some motif instances
into ¢t = 20 sequences each of length 600. Let m correspond to one full random
projection + EM cycle. We have set m = 1 to demonstrate the efficiency of
our approach. We compared the performance coefficient (PC) which gives a
measure of the average performance of our implementation compared to that
of Random Projection. The PC is given by :

|[K N P|

PC = ——
|K U P)|

(34)

where K is the set of the residue positions of the planted motif instances, and
P is the corresponding set of positions predicted by the algorithm. Table 8
gives an overview of the performance of our method compared to the random
projection algorithm on the (I,d) motif problem for different [ and d values.

Our results show that by branching out and discovering multiple local optimal
solutions, higher m values are not needed. A higher m value corresponds to
more computational time because projecting the [-mers into k-sized buckets
is a time consuming task. Using our approach, we can replace the need for
randomly projecting [mers repeatedly in an effort to converge to a global
optimum by deterministically and systematically searching the solution space
modeled by our dynamical system and improving the quality of the existing
solutions. The improvements of our algorithm are clearly shown in Table 8. We
can see that for higher length motifs, the improvements are more significant.

Fig. 11 shows the Tier-1 solutions obtained from a given consensus pattern.
Since the exit points are being used instead of saddle points, our method might
sometimes find the same local optimal solution obtained before. As seen from
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the figure, the Tier-1 solutions can differ from the original pattern by more
than just one nucleotide position. Also, the function value at the exit points
is much higher than the original value.

Table 7

The consensus patterns and their corresponding scores of the original local optimal
solution obtained from multiple random starts on the synthetic data. The best
first tier and second tier optimal patterns and their corresponding scores are also

reported.
(1,d) Initial Pattern Score First Tier Pattern Score Second Tier Pattern Score
(11,2) AACGGTCGCAG 125.1 CCCGGTCGCTG 147.1 CCCGGGAGCTG 153.3
(11,2) ATACCAGTTAC 145.7 ATACCAGTTTC 151.3 ATACCAGGGTC 153.6
(13,3) CTACGGTCGTCTT 142.6 CCACGGTTGTCTC 157.8 CCTCGGGTTTGTC 158.7
(13,3) GACGCTAGGGGGT 158.3 GAGGCTGGGCAGT 161.7 GACCTTGGGTATT 165.8
(15,4) CCGAAAAGAGTCCGA 147.5 CCGCAATGACTGGGT 169.1 CCGAAAGGACTGCGT 176.2
(15,4) TGGGTGATGCCTATG 164.6 TGGGTGATGCCTATG 166.7 TGAGAGATGCCTATG 170.4

(17,5)

TTGTAGCAAAGGCTAAA

143.3

CAGTAGCAAAGACTACC

173.3

CAGTAGCAAAGACTTCC

175.8

(17,5)

ATCGCGAAAGGTTGTGG

174.1

ATCGCGAAAGGATGTGG

176.7

ATTGCGAAAGAATGTGG

178.3

(20,6)

CTGGTGATTGAGATCATCAT

165.9

CAGATGGTTGAGATCACCTT

186.9

CATTTAGCTGAGTTCACCTT

194.9

(20,6)

GGTCACTTAGTGGCGCCATG

216.3

GGTCACTTAGTGGCGCCATG

218.8

CGTCACTTAGTCGCGCCATG

219.7

As opposed to stochastic processes like mutations in genetic algorithms, our
approach reduces the stochastic nature and obtains the nearby local optimal
solutions systematically. Fig. 12 shows the performance of the Exit-point ap-
proach on synthetic data for different (/,d) motifs. The average scores of the ten
best solutions obtained from random starts and their corresponding improve-
ments in Tier-1 and Tier-2 are reported. One can see that the improvements
become more prominent as the length of the motif is increased. Table 7 shows
the best and worst of these top ten random starts along with the consensus
pattern and the alignment scores.
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Fig. 12. The average scores with the corresponding first tier and second tier im-
provements on synthetic data using the random starts with Exit-point approach
with different (,d) motifs.

With a few modifications, more experiments were conducted using the Ran-
dom Projection method. The Random Projection method will eliminate non-
promising regions in the search space and gives a number of promising sets
of initial patterns. EM refinement is applied to only the promising initial pat-
terns. Due to the robustness of the results, the Exit-point method is employed
only on the top five local optima. The Exit-point method is again repeated on
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Fig. 13. The average scores with the corresponding first tier and second tier improve-
ments on synthetic data using the Random Projection with Exit-point approach
with different (,d) motifs.

Table 8

The results of performance coefficient with m = 1 on synthetically generated se-
quences. The IC scores are not normalized and the perfect score is 20 since there
are 20 sequences.

Motif | PC obtained using | PC obtained using

(LLd) | Random Projection | Exit-point method

(11,2) 20 20
(15,4) 14.875 17
(20,6) 12.667 18

the top scoring first tier solutions to arrive at the second tier solutions. Fig. 13
shows the average alignment scores of the best random projection alignments
and their corresponding improvements in tier-1 and tier-2 are reported. In
general, the improvement in the first tier solution is more significant than the
improvements in the second tier solutions.

4.5.2  Real Datasets

Table 9 shows the results of the Exit-point methodology on real biological
sequences. We have chosen [ = 20 and d = 2. ‘¢’ indicates the number of
sequences in the real data. For the biological samples taken from [29,38], the
value m once again is the average number of random projection + EM cycles
required to discover the motif. All other parameter values (like projection size
k = 7 and threshold s=4) are chosen to be the same as those used in the
Random projection paper [29]. All of the motifs were recovered with m = 1
using the Exit-point strategy. Without the exit point strategy, the Random
Projection algorithm needed multiple cycles (m=8 in some cases and m=15
in others) in order to retrieve the correct motif. This elucidates the fact that
global methods can only be used to a certain extent and should be combined
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with refined local heuristics in order to obtain better efficiency. Since the
random projection algorithm has outperformed other prominent motif finding
algorithms like SP-STAR, WINNOWER, Gibbs sampling etc., we did not
repeat the same experiments that were conducted in [29]. Running one cycle
of random projection + EM is much more expensive computationally. The
main advantage of our strategy comes from the deterministic nature of our
algorithm in refining motifs.

Table 9
Results of Exit-point method on biological samples. The real motifs were obtained
in all the six cases using the Exit-point framework.

Sequence Sample Size t Best (20,2) Motif Reference Motif
E. coli CRP 1890 18 TGTGAAATAGATCACATTTT TGTGANNNNGNTCACA
preproinsulin 7689 4 GGAAATTGCAGCCTCAGCCC CCTCAGCCC
DHFR 800 4 CTGCAATTTCGCGCCAAACT ATTTCNNGCCA
metallothionein 6823 4 CCCTCTGCGCCCGGACCGGT TGCRCYCGG
c-fos 3695 5 CCATATTAGGACATCTGCGT CCATATTAGAGACTCT
yeast ECB 5000 5 GTATTTCCCGTTTAGGAAAA TTTCCCNNTNAGGAAA

The Exit-point framework broadens the search region in order to obtain an
improved solution which may potentially correspond to a better motif. In most
of the profile based algorithms, EM is used to obtain the nearest local opti-
mum from a given starting point. In our approach, we consider the boundaries
of these convergence regions and find the surrounding local optimal solutions
based on the theory of stability regions. We have shown on both real and
synthetic data sets that beginning from the EM converged solution, the Exit-
point approach is capable of searching in the neighborhood regions for another
solution with an improved information content score. This will often translate
into finding a pattern with less hamming distance from the resulting align-
ments in each sequence. Our approach has demonstrated an improvement in
the score on all datasets that it was tested on. One of the primary advantages
of the Exit-point methodology is that it can be used with different global and
local methods. The main contribution of our work is to demonstrate the capa-
bility of this hybrid EM algorithm in the context of the motif finding problem.
Our algorithm can potentially use any global method and improve its results
efficiently. From our results, we see that motif refinement stage plays a vital
role and can yield accurate results deterministically. We would like to continue
our work by combining other global methods available in the literature with
existing local solvers like EM or GibbsDNA that work in continuous space.
By following the example of [32], we may improve the chances of finding more
promising patterns by combining our algorithm with different global and local
methods.
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5 Supervised Learning - Training Neural Networks

In this section, we demonstrate the ability of the stability region based meth-
ods to obtain multiple local minima on the error surface during the training
procedure of artificial neural networks (ANN) [47]. ANNs are powerful statis-
tical machine learning tools that are widely used in several domains of science
and engineering for problems like function approximation, timeseries predic-
tion, medical diagnosis, character recognition, load forecasting, speaker identi-
fication, risk management etc. They were developed in analogy to the human
brain for the purpose of improving conventional learning capabilities. These
networks serve as excellent approximators of nonlinear continuous functions
[48]. However, using an artificial neural network to model a system involves
in dealing with certain difficulties in achieving the best representation of the
classification problem. The two challenging tasks in the process of learning
using ANNs are network architecture selection and optimal training. In de-
ciding the architecture, a larger network will always provide better prediction
accuracy for the data available [49]. However, such a large network that is too
complicated to model and also it might be customized to some given prob-
lem and hence will lose its generalization capability for the unseen data. Also,
every additional node into the network translates to increased hardware cost.

Hence, it is vital to develop algorithms that can exploit the power of a given
network architecture and this can be achieved by obtaining the global min-
imum of the error on the training data along with the cross validation pro-
cedure. The main goal of optimal training of the network is to find a set of
weights that achieves the global minimum of the mean square error (MSE)
[50]. We will consider a simple one hidden layer neural network with n (num-
ber of features) input nodes, k hidden nodes and 1 output node. Thus, each
network has nk weights and k£ biases to the hidden layer, and k weights and
one bias to the output node. Hence, training a neural network effectively is
necessarily a search problem of dimension s = (n + 2)k + 1. The network is
trained to deliver the output value (Y;) of the the i"* sample at the output
node which will be compared to the actual target value (¢;). The local min-
ima problem is one of the thoroughly studied aspects of neural networks [51].
To avoid this problem, some global methods like multiple random starts, ge-
netic algorithms, simulated annealing etc. can identify promising regions of
the weight space, but are time-consuming and are essentially stochastic in na-
ture. Expecting such stochastic algorithms to fine-tune the training weights
will be even more time consuming. Thus, there is a necessity to efficiently
search for good solutions in promising regions of the solution space. The main
focus of this is to develop a robust training algorithm for obtaining the opti-
mal set of weights of an artificial neural network by searching the parameter
subspace in a systematic manner using the concepts of stability regions that
were presented earlier.
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5.1 Background

The performance of a network is usually gauged by measuring the mean square
error (MSE) of its outputs from the expected targets. The goal of optimal
training is to find a set of parameters that achieves the global minimum of the
MSE [52,53,48]. For a n-dimensional dataset, the MSE over @) samples in the
training set is given by:

Q

22; (i) — y(X. W)]? (35)

cw) =
where t is the target output, X is the input vector and W is the weight vector.
The MSE as a function of the parameters will adopt a complex topology with
several local optimal solutions. The network’s weights and thresholds must be
set so as to minimize the prediction error made by the network. Since it is not
possible to analytically determine the global minimum of the error surface,
the neural network training is essentially an exploration of the error surface
for an optimal set of parameters that attain this global minimum.

Training algorithms can be broadly classified into ‘local’ and ‘global’ methods.
Local methods begin at some initial guesses and deterministically lead to a
nearby local minimum. From an initial random configuration of weights and
thresholds, the local training methods incrementally seek for improved solution
until they reach local minima. Typically, some form of the gradient informa-
tion at the current point on the error surface is calculated and used to make
a downhill move. Based on the movement towards improved solutions, local
methods can be subdivided into two categories: (1) Line search methods that
minimize the function repeatedly along some descent directions until the local
minimum is reached (e.g. Newton’s method, BEFGS method and conjugate gra-
dient methods). (2) Trust region methods where the surface is assumed to be a
simple model (like a parabola) such that the minimum can be located directly
if the model assumption is good (e.g. Levenberg-Marquardt(LM) method).
More details on these methods are described in [50].

All these local methods discussed so far assume that they already have an
initial guess to begin with. Due to the high non-linearity of the error surface,
the quality of the final solution depends significantly on the initial set of pa-
rameters available. In practice, most of these methods are typically combined
with stochastic global methods which yield a promising set of parameters in
the weight space. These global methods explore the entire error surface and
thus the chance of attaining a near-global optimal solution is high. Advanced
techniques like Genetic algorithms and simulated annealing are applied in
combination with standard BP inorder to allow for more promising solutions
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and avoid being stuck at local minima [54]. Inspite of their (asymptotic) guar-
antees in convergence to the global minimum, even for simple learning tasks,
these usually exhibits are very slow. Also, these methods can explore the en-
tire solution space effectively and obtain promising local optimal solutions,
but they lack fine-tuning capability to obtain a precise final solution and re-
quire a local methods to be employed. From both of the methods mentioned
above, one can realize that there is a clear gap between these methods and
our approach tries to communicate with both local and global methods.

Probably, the algorithms that resemble our methodology are TRUST [44] and
dynamic tunneling [55]. These methods attempt to move out of the local min-
imum in a stochastic manner. The training algorithm proposed here differs
from these methods by deterministically escaping out of the local minimum
and systematically exploring multiple local minima on the error surface in a
tier-by-tier manner in order to advance towards the global minimum. This
approach is based on the fundamental concepts of stability regions that were
established in [7,4]. Basically, a global method yields initial points in certain
promising regions of the search space. These promising initial points are used
to search the neighborhood subspace in a systematic manner. TRUST-TECH
relies on a robust, fast local method to obtain a local optimal solution. It ex-
plores the subspace in a tier-by-tier manner by transforming the function into
its corresponding dynamical system and exploring the neighboring stability
regions. Thus, it gives a set of promising local optimal solutions from which
a global minimum is selected. In this manner, TRUST-TECH can be treated
as an effective interface between the global and local methods, which enables
the communication between these two methods. It also allows the flexibility
of choosing different global and local methods depending on their availability
and performance for certain specific classification tasks. Also, using our pro-
cedure, we will be able to truncate global methods at early stages and not use
them to fine-tune the solutions and thus saving a lot of computational effort.

5.2  Problem Formulation

Table 10 gives the important notations used here. The final nonlinear mapping
of the network model is given by:

k n
y(W, X) = ¢ (Z Wo;P1 (Z w;jr; + bj) + bo)
j=1 i=1

where ¢ and ¢y are the activation functions of the hidden nodes and the
output nodes respectively. ¢; and ¢, can be same functions or can be different
functions. We have chosen to use ¢5 to be sigmoidal and ¢; to be linear. Results
in the literature [56], suggest that this set of activation functions yield the best
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Table 10
Description of the notations used

Notation Description

Q Number of training samples

X Input vector

w Weight vector

n Number of features
Number of hidden nodes

wo; weight for j** hidden and the output node

Wij weight for i** input and ;" hidden node
bo bias of the output node

b; bias of the j* hidden node

t; target value of the ¥ input sample

Y output of the network

e; Error for the i*" input sample

results for feedforward neural networks. The task of the network is to learn as-
sociations between the input-output pairs (Xi,t1), (Xa,t2), ..., (Xg, tg). With-
out loss of generality, lets construct the following weight vector :

T
W:<w017 Wo2, -+, Woky -+; Wnl, Wp2, .., Wnk, b07 bla b2-'> bk)

which includes all the weights and biases that are to be computed. Hence, the
problem of training neural networks is s-dimensional unconstrained minimiza-
tion problem where s = (n + 2)k + 1. The mean squared error which is to be
minimized can be written as

19

C(W):é‘

e; (w) (36)

where the error e;(w) = t; — y(w, x;). The error cost function C(-) averaged
over all training data is a highly nonlinear function of the synaptic vector w
Ignoring the constant for simplicity, it can be shown that

VO(w) = J (w)e(w) (37)
V20 (w) = JE(w)J(w) + S(w) (38)
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where J(w) is the Jacobian matrix

[ 0e; ey dey
oWy oWy ° ° OWs
Oes des Oea
oWy oWy = ° OWs
J(w) =
Oeq Oeq Oeq
| oWy ows oW |
and
Q
Sw) = e (w)V7e;(w) (39)
i=1

Generally, if we would like to minimize J(w) with respect to the parameter
vector w, any variation of Newton’s method can be written as

Aw =~ [VC(w)] " vO(w)

B (40)
= — [T w)J(w) + Sw)| T (w)e(w)

5.8 Stability Region based Approach

In this work, we exploit the geometric and topological structure of the error
surface to explore multiple local optimal solutions in a systematic manner.
Firstly, we describe the transformation of the original problem into its corre-
sponding nonlinear dynamical system and then propose a new algorithm for
finding multiple local optimal solutions.

5.3.1 Problem Transformation

This section mainly deals with the transformation of the original likelihood
function into its corresponding nonlinear dynamical system and introduces
some terminology pertinent to comprehend our algorithm. This transformation
gives the correspondence between all the critical points of the error surface and
that of its corresponding gradient system. To analyze the geometric structure
of the error surface, we build a generalized gradient system described by

d

dltv = —gradp C(w) = —R(w)~'VC(w) (41)
where the error function C' is assumed to be twice differentiable to guarantee
unique solution for each initial condition w(0) and R(w) is a positive defi-

nite symmetric matrix (also known as Reimannian metric) for all w € R°.
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It is interesting to note the relationship between (41) and (40) and obtain
different local solving methods used to find the nearest local optimal solu-
tion with guaranteed convergence. For example, if R(w) = I, then it is a
naive error back-propagation algorithm. If R(w) = [J(w)TJ(w)] then it is
the Gauss-Newton method and if R(w) = [J(w)TJ(w) + pl] then it is the
Levenberg-Marquardt method.

5.8.2  Algorithm

The proposed algorithm uses a promising starting point (A*) as input and
outputs the best local minimum of the neighborhood in the weight space.

Input: Initial guess(A*), Tolerance (7), Step size (s)

Output: Best neighborhood local minimum (A4;;)

Algorithm:

Step 1: Obtaining good initial guess (A*): The initial guess for the algorithm
can be obtained from other global search methods or from a purely random
start. Some domain knowledge about the specific dataset that is being trained
on, might help in eliminating non-promising set of initial weights.

Step 2: Moving to the local minimum (m;): Using an appropriate local solver,
the local optimum m; is obtained using the A* as initial guess. The starting
point will be x; for the later stages.

Step 3: Determining the search direction (d;): The eigenvectors d; of the Jaco-
bian are computed at m;. These eigenvector directions might lead to promising
regions of the subspace. Other search directions can also be chosen based on
the specific problem that is being dealt.

Step 4: Escaping from the local minimum: Taking small step sizes away from
m; along d; directions increases the objective function value till it hits the
stability boundary. However, the objective function value then decreases after
the search trajectory passes the exit point on the stability boundary. x; is used
as initial guess and local solver is applied again (go to Step 2).

Step 5: Finding Tier-1 local minima (A,;): Exploring the neighborhood of the
optimum solution local to the initial guess leads to tier 1 local optima. Ex-
ploring from tier k£ local optima leads to tier k£ 4 1 local optima.

Step 6: Exploring Tier-k local minima (Ay;): Explore all other tiers in a sim-
ilar manner described above. Selecting the best solution from all these tiers,
the global optimum of desired quality can be obtained.

Step 7: Termination Criteria: The procedure can be terminated when the best
solution obtained so far is satisfactory (lesser than sol,.,) or a predefined max-
imum number of tiers is explored.

Fig. 14 illustrates two tier TRUST-TECH methodology. The ‘“*’ represents
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Fig. 14. Illustration of Tier-2 TRUST-TECH procedure for obtaining neighborhood
local minima.

the initial guess. Dotted arrows represent the convergence of the local solver.
Solid arrows represent the gradient ascent linear searches along eigenvector
directions. ‘X’ indicates a new initial condition in the neighborhood stability
region. M represents the local minimum obtained by applying local methods
from 'X’. Aj; indicates Tier-1 local minima. e;; are the exit points between
M and A,;. Similarly, As; and eg; are the second-tier local minima and their
corresponding exit points respectively.

5.4 Implementation Details

All programs were implemented in MATLAB v6.5 and run on Pentium IV
2.8 GHz machines. We will now describe some implementation issues of our
algorithm.

5.4.1 Network Architecture and Training

As described in the introduction section, we have chosen to demonstrate the
capability of our newly proposed algorithm on a network with single hidden
layer and an output layer with only one output node. This architecture is
not complicated and has the capability to precisely demonstrate the prob-
lems with the existing approaches. Each hidden node has a tangent-sigmoid
transfer function and the output node has a pure linear transfer function. The
number of nodes in the hidden layer is determined by increasing number of
nodes, and selecting the number of nodes that achieves a compromise between
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minimal error value and minimal number of nodes. The trust region based
Levenberg-Marquardt algorithm is chosen because of efficiency in terms of
time complexity and space requirements. It utilizes the approximation of the
Jacobian in its iterative gradient descent, which will be used for generating
promising directions in TRUST-TECH. Two different initialization schemes
were implemented. The most basic global method which is multiple random
starts with initial set of parameters between -1 and 1. More effective global
method namely Nguyen-Widrow (NW) algorithm [57] has also been used to
test the performance of our algorithm. The NW algorithm is implemented as
the standard initialization procedure in MATLAB. In both cases, the best ini-
tial set of parameters in terms of training error is chosen and improved with
our TRUST-TECH algorithm.

5.4.2 TRUST-TECH

Algorithm 5 TRUST TECH(NET,Wts,ss, T)
Wts = Train(NET, Wts, 1)
Error = Estimate(NET, Wts)
Thresh = c* Error
Wtsl[ | = Neighbors(NET,Wts, ss,T)
for k =1 to size(Wtsl) do
if Estimate(NET,Wtsl[k]) < Thresh then
Wts2[k][ | = Neighbors(NET, Wtsl, ss, T)
end if
end for
Return best(Wts, Witsl, Wts2)

It is effective to use TRUST-TECH methodology for those promising solu-
tions obtained from stochastic global methods. Hence, our algorithm assumes
that it is being invoked from a promising set of initial parameters. Algorithm
5 describes the two-tier TRUST-TECH algorithm. NET assumes to have a
fixed architecture with a single output node. ss is the step size required for
moving out of the stability region to obtain the exit point. 7 is the tolerance
of error used for the convergence of the local method. Weights give the initial
set of weight parameter values. Train function implements the Levenberg-
Marquardt method that obtains the local optimal solution from the initial
condition. The procedure Estimate computes the mean square error (MSE)
value of the network model. A threshold value (T'hresh) is set based on this
MSE value. The procedure Neighbors returns all the next tier local optimal
solutions from a given local solution. After obtaining all the tier-1 solutions,
Neighbors is again invoked (only for promising solutions) to obtain the second-
tier solutions. The algorithm finally compares the initial solution, tier-1 and
tier-2 solutions and returns the network corresponding to the lowest error
among all these solutions.
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Algorithm 6 Wts[ ]| Neighbors (NET,Wts, ss, T)
[(Wts, Hess| = Train(NET, Wts, 1)
evec = Fig Vec(Hess)

Wts[] = NULL
for k =1 to size(evec) do
Old-Wts =Wts

ext_Pt = Find_Ext(NET, Old_Wts, ss, evec|k])
if (ext_Pt) then
New Wts = Move(NET, Old_ Wts, evec|k])
New Wts = Train(NET, New Wts, 1)
Errors = Estimate(NET, New_Wts)
Wts| | = Append(Wts[ |, New_Wts, Errors)
end if
end for

Return Wits| |

The approximate Hessian matrix used for updation in the Levenberg-Marquardt
method is utilized to obtain the search direction. Since there is no optimal way
of obtaining promising search directions, the Eigen vectors of this Hessian ma-
trix are used as search directions. Along each search direction, the exit point
is obtained by evaluating the function value along that particular direction.
The step size for evaluation is chosen to be the average step size taken during
the convergence of the local procedure. The function value increases initially
and then starts to reduce indicating the presence of exit point on the sta-
bility boundary. Move function ensures that a new point (obtained from the
exit point) is located in a different (neighboring) stability region. From this
new initial guess, the local method is applied again to obtain the local opti-
mal solution of the neighborhood stability region. The search for exit points
along these directions will be stopped if exit points are not found after certain
number of function evaluations.

Table 11
Summary of Benchmark Datasets. Dataset (D

~—

, Sample size (Q), Input features (n),

Output classes (p), No. of Hidden nodes (k), No. of search variables ((n+2)k+1)
D Q | n|p|k| (n+2)k+1
Cancer 683 | 9 | 2|5 56
Diabetes 178 | 8 |3 |4 61
Image 2310 | 19 | 7 | 8 169
Ionosphere | 351 |34 |2 |9 325
Iris 150 | 4 | 3|3 19
Sonar 208 | 60 | 2 | 8 497
Wine 178 |13 |3 |4 61
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Table 12
Percentage improvements in the classification accuracies over the training and test
data using TRUST-TECH with multiple random restarts.

Train Error Test Error
Dataset MRS+BP [ TRUST-TECH [ Improvement MRS+BP [ TRUST-TECH [ Improvement
Cancer 2.21 1.74 27.01 3.95 2.63 50.19
Image 9.37 8.04 16.54 11.08 9.74 13.76
Ionosphere 2.35 0.57 312.28 10.25 7.96 28.77
Iris 1.25 1.00 25.00 3.33 2.67 24.72
Diabetes 22.04 20.69 6.52 23.83 20.58 15.79
Sonar 1.56 0.72 116.67 19.17 12.98 47.69
Wine 4.56 3.58 27.37 14.94 6.73 121.99
Table 13

Percentage improvements in the classification accuracies over the training and test
data using TRUST-TECH with MATLAB initialization.

Train Error Test Error
Dataset NW+BP | TRUST-TECH | Improvement | NW4BP | TRUST-TECH | Improvement
Cancer 2.25 1.57 42.99 3.65 3.06 19.06
Image 7.48 5.17 44.82 9.39 7.40 26.90
Ionosphere 1.56 0.92 69.57 8.67 6.54 32.57
Iris 1.33 0.67 100.00 3.33 2.67 25.00
Diabetes 21.41 19.55 9.53 23.70 21.09 12.37
Sonar 2.35 0.42 456.96 17.26 14.38 20.03
Wine 7.60 1.62 370.06 14.54 4.48 224.82

5.5 Ezxperimental Results

Our algorithm is evaluated using seven benchmark datasets in the UCI ma-
chine learning repository [25]. Optimal architectures have been fixed for the
networks based on some heuristic training. The main focus of our algorithm
is to demonstrate the capability of obtaining optimal weight parameters and
improvements in the generalization ability of the networks. Table 5.4.2 sum-
marizes the datasets. It gives the number of samples, input features, output
classes along with the number of hidden nodes of the optimal architecture.
These datasets have varying degrees of complexity in terms of sample size,
output classes and the class overlaps. To demonstrate the generalization ca-
pability (and hence the robustness) of the training algorithm, 10-fold cross
validation is performed on each dataset. The criteria of evaluation is given
by the classification accuracy of the network model in terms of the percent-
age of misclassified samples in the test cases. Tables 5.4.2 and 5.4.2 shows
the improvements in the train error and the test error using TRUST-TECH
methodology when multiple random starts (MRS) and matlab initialization is
used. Five tier-1 and corresponding tier-2 solutions were obtained using the
TRUST-TECH strategy. For some of the datasets, there had been consider-
able improvements in the classifier performance. Spiderweb diagram shown in
Fig. 15 a pretentious way to demonstrate the improvements in a tier-by-tier
manner.

Fig.15 shows spider web diagrams showing the tier-1 and tier-2 improvements

20



accuracy
8

100

Mo~ n oW om oo @ @

% Improvements in the classifier
% Improvements in the classifier accuracy

(a) Wine Dataset

% Improvements in the classifier accuracy
% Improvements in the classifier acc

(c) Cancer Dataset (d) Image Dataset

Fig. 15. Spider web diagrams showing the tier-1 and tier-2 improvements using
TRUST-TECH method on various benchmark datasets.

using TRUST-TECH method on various benchmark datasets. The circle in
the middle of the plot represents the starting local optimal solution. The ba-
sic two dimensions are chosen arbitrarily for effective visualization and the
vertical axis represents the percentage improvement in the classification accu-
racy. The two basic axes are chosen arbitrarily and the vertical axis represents
the improvements in the classifier accuracy. The distances between each tier
are normalized to unity and the improvements are averaged out across 10
folds. The five blue vertical lines surrounding the center circle are the best
five local minima obtained from a tier 1 search across all folds. The five best
second-tier improvements are plotted using red lines. It should be noted that
the best first tier solution need not give the best second tier solution. Also,
the second tier solution is as good as or better than the first tier solution.

This method provides an optimal set of training parameters for a neural net-
work model thus allowing improved classification accuracies. Because of its
non-probabilistic nature, multiple runs of our algorithm from any given initial
guess will provide exactly the same result. The proposed method also allows
the user to have the flexibility of choosing different global and local techniques
for training.
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The main advantages of the proposed TRUST-TECH framework are that it:

e Explores most of the neighborhood local optimal solutions unlike the tradi-
tional stochastic algorithms.

e Acts as a flexible interface between the EM algorithm and other global
methods.

e Allows the user to work with existing clusters obtained from the traditional
approaches and improves the quality of the solutions based on the maximum
likelihood criteria.

e Helps the expensive global methods to truncate early.

e Exploits the fact that promising solutions are obtained by faster convergence
of the EM algorithm.

6 Conclusion and Future Work

Global methods are powerful and stochastically search the entire parameter
space and obtain promising regions. Local methods, on the other hand, are de-
terministic and usually converge to a locally optimal solution that is nearest to
a given initial condition. Careful investigation reveals that there is a significant
gap between these two methods and in some applications, the objective func-
tion that these methods try to optimize are slightly different. In other words,
the objective scores for these methods are not well calibrated and hence, it
is important to develop methods that can search a subspace. In this paper,
we proposed stability region based methods for systematically exploring the
parameter subspace to obtain the neighborhood local optimal solutions. Our
method explores the dynamic and geometric characteristics of stability bound-
aries of a nonlinear dynamical system corresponding to the nonlinear function
of interest. Basically, our method coalesces the advantages of the traditional
local optimizers with that of the dynamic and geometric characteristics of
the stability regions of the corresponding nonlinear dynamical system of the
corresponding nonlinear function. These methods have been successfully used
for machine learning and pattern discovery problems. Our algorithm has been
tested on both synthetic and real datasets and the advantages of using this
stability region based framework are clearly manifested. This framework not
only reduces the sensitivity to initialization, but also allows the flexibility for
the practitioners to use various global and local methods that work well for a
particular problem of interest.

The stability region based Expectation-Maximization algorithm can be eas-
ily extended to other widely used EM related problems like k-means clus-
tering,training Hidden Markov Models, Mixture of Factor Analyzers, Prob-
abilistic Principal Component Analysis, Bayesian Networks etc. We would
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also like to extend these techniques to Markov Chain Monte Carlo methods
like Gibbs sampling for the estimation of mixture models. Several real-world
applications such as image segmentation, speech processing and text classifi-
cation can benefit heavily from these methods. Different global methods and
local solvers will be used along with the stability region based framework
to understand the flexibility. Frameworks for combining these methods with
other hierarchical stochastic algorithms such as evolutionary algorithms and
smoothing approaches are also proposed. The performance of such hierarchical
algorithms will be tested on large scale applications. Extensions to constrained
optimization problems also appears to be a very promising direction. Recently,
there had been a lot of interest in handling constraints in the data. Clustering
problems with Constraints might be added based on the prior information
about the samples and a stability region based constrained EM algorithm can
be developed [58].
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